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The advent of high throughput DNA sequencing is providing massive amounts of

tumor-associated mutation data. Implicit in these analyses is the assumption

that, by acquiring a series of hallmark changes, normal cells evolve along a

neoplastic path. However, the lack of correlation between cancer risk and global

exposure to mutagenic factors provides arguments against this model. This

suggested that additional, non-mutagenic factors are at work in cancer

development. A candidate determinant is TROP2, that stands out for its

expression in the majority of solid tumors in human, for its impact on the

prognosis of most solid cancers and for its role as driver of cancer growth and

metastatic diffusion, through overexpression as a wild-type form. The Trop-2

signaling network encompasses CREB1, Jun, NF-kB, Rb, STAT1 and STAT3,

through induction of cyclin D1 and MAPK/ERK. Notably, Trop-2-driven

pathways vastly overlap with those activated by most functionally relevant/

most frequently mutated RAS and TP53, and are co-expressed in a large

fraction of individual tumor cases, suggesting functional overlap. Mutated Ras

was shown to synergize with the TROP2-CYCLIND1 mRNA chimera in

transforming primary cells into tumorigenic ones. Genomic loss of TROP2 was

found to promote carcinogenesis in squamous cell carcinomas through

modulation of Src and mutated Ras pathways. DNA methylation and TP53

status were shown to cause genome instability and TROP gene amplification,

together with Trop-2 protein overexpression. These findings suggest that

mutagenic and the TROP2 non-mutagenic pathways deeply intertwine in

driving transformed cell growth and malignant progression of solid cancers.
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1 Introduction

The advent of high throughput DNA sequencing is providing

massive amounts of data on tumor-associated mutations (1) and on

the landscape of genetic alterations in cancer (2). Oncogene/tumor

suppressor gene mutation models have been adopted as a

conceptual framework for multi-stage tumor progression.

Underlying these analyses there is the assumption that normal

cells progressively evolve along the tumor progression path (3). In

contrast with this model, no correlation can be found between

cancer risk and body size (i.e. number of cell replications) or

longevity (i.e. duration of exposure to mutagenic factors), which

is known as the Peto’s paradox (4).

This suggested that non-mutagenic mechanisms (5) cooperate

with mutagenic oncogenic events (6) to drive tumor progression.

Trop-2 is a key candidate for such mechanisms (7). Upregulation of

Trop-2 has been associated to poor prognosis of lung (8), breast (9),

pancreas (10, 11), stomach (12), head and neck (13), ovary (14) and

colon-rectum cancers (11), suggesting a pivotal role of this molecule in

tumor progression (15) and metastatic diffusion (16). Notably, the

Trop-2 non-mutagenic signature of cancer-driving signaling networks

(17) appears to vastly overlap with signatures of mutated oncogenes

(18). Experimental evidence for this has been obtained in mTROP2

knockout mouse models (19) and in human tumors, whereby

interaction between Cyclin D1, TROP2 and mutated RAS leads to

the transformation of primary, naïve cells into tumorigenic ones (20).

DNA methylation and TP53 status were additionally shown to cause

genome instability, TROP gene amplification and Trop protein

overexpression (21). Thus, mutagenic and TROP2 non-mutagenic

pathways may deeply intertwine in driving cancer cell growth, and

play a convergent role in tumor progression in solid cancers.
2 Impact of Trop-2 in cancer and
genetic diseases

2.1 Trop-2 in cancer

TROP2 is a candidate non-mutated cancer driver, that stands

out for its expression in the majority of solid tumors in human (7,

22, 23). Trop-2 (AC: P09758) is a type-I transmembrane protein,

encoded by the tumor-associated calcium signal transducer 2

(TROP2/TACSTD2/M1S1/GA733-1) gene (7, 24, 25), a

retrotransposon of the TROP1/TACSTD1/EPCAM gene (24, 26).

The extracellular domain of Trop-2 (residues 27–274 in human)

encompasses a cysteine-rich N-terminal region, which hosts a

GA733 type 1 motif (residues 27-69) (27), and a thyroglobulin

type-1 domain (residues 70-148), followed by a C-terminal domain

devoid of cysteines (residues 149-274) (7). The 26-amino acid

intracellular domain contains a HIKE motif (28), and two PKC

phosphorylation sites, at Ser303 and Ser322 (29).

Trop-2 induces tumor (23) and cancer stem cell growth (30).

Our findings showed that Trop-2 expression is upregulated in

tumors, regardless of baseline expression in normal tissues (23).

Representative portraits of Trop-2 protein in 30 neoplasia types are
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shown in Figure 1. TROP2 mRNA expression levels in normal

tissues are shown in Figure 2. These findings first suggested that

Trop-2 expression in cancer cells provided a selective advantage.

Consistent with this, upregulation of wtTrop-2 was shown to

stimulate tumor growth in proportion to expression levels in vivo

(23). This correspondingly raised interest in Trop-2 as a target for

immunotherapy in solid cancer (32, 33), and in the development of

next-generation anti-Trop-2 antibodies (34).

Using antibody targeting and N-terminal Edman degradation,

we showed that Trop-2 undergoes cleavage in the first loop of the

thyroglobulin domain in the extracellular region, between residues

R87 and T88. ADAM10 was shown to be effector protease at this

site (16). Molecular modeling indicated that this cleavage induces a

profound rearrangement of the Trop-2 structure, which suggested

impact on its biological function. No Trop-2 cleavage was detected

in normal human tissues, whereas most tumors, including skin,

ovary, colon and breast cancers, showed Trop-2 proteolysis.

Proteolysis of Trop-2 at R87-T88 was shown to trigger cancer cell

growth and metastatic spreading (11).
2.2 Trop-2 alterations cause a rare
genetic disease

Given the role of Trop-2 in cancer, a role in cancer inheritance

was explored. Genomic loss of the murine TROP2 (mTrop2) gene

was shown to promote carcinogenesis in squamous cell carcinomas

through modulation of Arf, Src and mutated Ras pathways in

mTrop2 mouse knockouts (19).

Genomic alterations of the human TROP2 were shown to cause

a rare genetic disease, whereby TACSTD2 mutations induce an

amyloid corneal dystrophy (Gelatinous Drop-like Corneal

Dystrophy, GDLD) (35), while other organs that host Trop-2-

expressing epithelia remain devoid of amyloid deposits. A

common GDLD mutation is the substitution of the codon for

glutamine at position 118 with a stop codon, in Japan (36) and

worldwide (37). However, a broad spectrum of mutations has been

subsequently detected (38), and novel, more rare mutations are still

being added to this list (39). No clear association of GDLD

mutations to altered cancer incidence has been reported (23).
2.3 Epigenetic TROP2 signatures in cancer

The expression of the TROP2 gene was found to be under

epigenetic control in choriocarcinomas, i.e. trophoblast-derived

malignancies (40, 41). This was shown by associating the

expression of TROP1, TROP2 and control genes to their native

genomic configuration and DNA methylation status in

choriocarcinoma cells. In other words, intact gene coding capacity

was shown by transfection and expression of the encoded protein,

as modulated by their respective DNA methylation status (40).

Epigenetic control was shown for HLA class I genes, for the T-cell

differentiation antigens CD5 and CD8, for TROP1 and TROP2.

Treating choriocarcinoma cells with the lowest expression ability

with 5-azacytidine led to DNA demethylation, and to differential
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reexpression of cell surface antigen genes. Further cultivation of

choriocarcinoma cells in the absence of 5-azacytidine resulted in

renewed methylation of their DNA and reversion to baseline low

expression capacity (40).

Cases with epigenetic reduction of the expression of the TROP2

gene were identified in prostate cancer (42). TACSTD2 was

unmethylated in prostatic intraepithelial neoplasia and

hypermethylated/down-regulated in 17% of prostate cancers (42).

Low TROP2 expression was observed in lung adenocarcinomas, as

compared with normal lung tissues. Bisulphite DNA sequencing

and methylation-specific polymerase chain reaction showed that

loss of expression was due to hypermethylation of the TROP2

promoter region. Consistent with this, DNA demethylation with

5-Aza-deoxycytidine led to activation of TROP2 expression (43).
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TROP2 was found highly expressed in normal bile duct epithelia,

but down-regulated in cholangiocarcinoma cells. Sixty percent of

cholangiocarcinomas revealed TROP2 promoter hypermethylation

and TROP2 knockdown significantly enhanced the proliferation

and migration of cholangiocarcinoma cell lines (44).
2.4 Post-transcriptional and
post-translational modulation of
TROP2 expression in cancer

The expression of TROP2 in cancer was shown to be modulated

by both post-transcriptional and post-translational mechanisms. A

bi-cistronic CYCLIN D1-TROP2 mRNA chimera was isolated from
FIGURE 1

Trop-2 expression in cancer. Immunohistochemical analysis of Trop-2 protein expression in representative tumor cases (23). Tumor histotypes are
indicated. Four expression subgroups (absent, weak, moderate and intense) were defined according to Spizzo et al. (31). Negative tumors are cases
5, 6, 12, 14, 22-30. Weak expression was detected in cases 7, 11, 20. Moderate expression was found in cases 3, 4, 8, 13, 16, 21. Intense expression
was observed in cases 1, 2, 9, 10, 15, 17-19.
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human ovarian and mammary cancer cells (20). The CYCLIN D1-

TROP2 mRNA was shown to transform naïve, primary cells and to

induce aggressive tumor growth. Silencing of the chimeric mRNA

inhibited breast cancer growth. The CYCLIN D1-TROP2 mRNA

was found expressed by a large fraction of human gastro-intestinal,

ovarian and endometrial tumors. The chimeric mRNA was shown

to be of post-transcriptional origin, and independently translated

the Cyclin D1 and Trop-2 proteins. Truncation of the 3’ UTR of the

CYCLIN D1mRNA led to higher mRNA stability, for inappropriate

expression during the cell cycle. There was a quantitative

correlation between the chimeric mRNA and the transcriptional

levels of CYCLIN D1 and TROP2. Hence, an oncogenic determinant

appears linked to levels of expression of the parental moieties, in the

absence of both epigenetic changes and of mutagenic alterations.

This mechanism of cell transformation appears widespread in

human cancers (20).

A distinct post-transcriptional TROP2 modulation mechanism

was shown to involve the Trop-2/miR-125b axis in the progression

from normal urothelium to non-invasive and invasive urothelial

cancer (45). miR-125b inhibits Trop-2 expression. Experimental

findings showed that a progressive increase in Trop-2 protein levels

along urothelial cancer progression is induced by miR-125b

downregulation, and this correlates with the severity of the

disease (45).

Post-transcriptional modulation of Trop-2 expression was also

found to be dependent on environmental factors. In SW480 colon

cancer cells (–),-epigallocatechin-3-gallate (EGCG) affected the

post-transcriptional processing of the TROP2 mRNA, which was

quickly and specifically degraded in the presence of EGCG.

Furthermore, EGCG was found to suppress Trop-2 expression at

a post-translational level in HCT-116 cells, by affecting the stability

of the Trop-2 protein (46).
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2.5 The intertwining of mutagenic
and Trop-2 non-mutagenic signatures
in cancer

DNA methylation was shown to mediate TROP gene copy

number variation, with corresponding additional alteration of

protein expression levels (40, 41), suggesting a corresponding

stronger drive for cancer cell proliferation (23). This was shown

by selection for high protein expressors at a clonal level, which was

found to lead to progressively higher expression of CD5, CD8a,
TROP2 through gene amplification (41). A lack of TROP1 gene

amplification was shown to depend on a unique pattern of gene

methylation. This regulatory mode was lost upon treatment with

the DNA demethylating agent 5-azacytidine (41) and demethylated

TROP1 genes were found to amplify efficiently and progressively.

Thus, DNA methylation not only regulates the expression of the

TROP genes (40), but also is a determinant of TROP gene

amplification in tumor cells (41). Mutations of TP53 were

subsequently shown to induce loss of DNA methylation in the

TROP1 gene, which then led to gene amplification (21). This was

reverted by transduction of a wtTP53 gene or by inducing

methylation of the genomic DNA with the Sss I DNA methylase

(21), demonstrating a mechanistic link between mutations of the

TP53 tumor suppressor gene, genomic instability/gene copy

number variation (47) and overexpression of the TROP genes.

The expression of the TROP2 gene was shown to depend on a

large network of transcription factors, that includes p63/p53L, ERG,

GRHL1/Get-1, HNF1A/TCF-1, HNF4A, SPI1/PU.1, WT1, GLIS2,

AIRE, FOXM1 and FOXP3 (17). TROP2 upregulation was found to

then drive the expression and activation of CREB1, Jun, NF-kB, Rb,
STAT1 and STAT3 through induction of the cyclin D1 and MAPK/

ERK kinase pathways. High-throughput proteomic analysis led us
FIGURE 2

TROP2 gene expression in normal tissues. TROP2 mRNA expression levels were obtained from the DepMap portal (https://depmap.org/portal/)
(Expression public 20Q2) and expressed as Log2 (TPM+1). Whisker plots show value distributions of TROP2 mRNA levels across different normal
tissues. Boxes corresponding to individual tissues are color coded according to their median intensity (horizontal bars within each box). Dots indicate
outlier measurements.
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to identify AKT as a central hub of the Trop-2 activation network in

human cancer cells. AKT inhibitors only blocked the growth of

Trop-2–expressing tumors, but were ineffective on Trop-2–null

cells, indicating Trop-2 as a pivotal AKT activator for tumor

growth (48). AKT was also shown to be central to Trop-2

signaling in lung adenocarcinomas, as inhibition of TROP2

expression, via DNA methylation, enacted IGF-1R signaling and

AKT/b-catenin (43). These signaling pathways were shown to be

triggered by a Trop-2, Na+/K+ ATPase, CD9, PKCa, cofilin
membrane signaling super-complex. This super-complex was

found to be ubiquitous, but essentially dormant in normal cells,

and was shown to be activated by Trop-2 to trigger colorectal cancer

growth and invasion (29).

These findings suggested functional interaction and potential

synergy of mutagenic and non-mutagenic cancer drivers. Trop-2-

triggered PKCa, tetraspanins, AKT, Jun, NF-kB, Rb, STAT1,
STAT3, cyclin D1, MAPK/ERK kinases fall within main

hallmarks of tumor progression (6, 18, 49), and comprise

signaling networks triggered by mutated oncogenes (1). As

indicated above, DNA methylation and TP53 status are

instrumental to TROP gene copy number variation and to

consequent aberrant overexpression of wtTrops (21, 41).

Consistent with this, genomic loss of mTrop2 rendered Arf-null

mice susceptible to the formation of biphasic sarcomatoid carcinomas

upon carcinogen exposure in skin cancer-resistant mouse strains

(C57BL/6). Ras-transformed keratinocytes derived from mTrop2(-/-)

Arf(-/-) mice exhibit enhanced proliferative and migratory capacity as

well as increased activation of MAPK and Src (19). Ras-transformed

mTrop2(-/-) keratinocytes were shown to undergo epithelial to

mesenchymal transition (EMT) and formed tumors with spindle cell

histology. Consistent with this, TROP2mRNA levels were found to be

down-regulated in head and neck squamous cell carcinomas

undergoing EMT (19). Mutated Ras was shown to synergize with the
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TROP2-CYCLIND1 mRNA chimera in transforming primary cells in

vitro and in inducing tumor growth in vivo (20). The vast

overexpression of Trop-2 in main cancer types, e.g. breast (76%),

stomach (70%), prostate (80%), pancreas (83%), cervix (91%) cancers

(23), indicates that these mutagenic and non-mutagenic signatures are

candidate to frequently interact in cancer cells (1).
2.6 Mutagenic and Trop-2 non-mutagenic
signatures – the pancreatic cancer case

A prognostic impact of Trop-2 and of activation-inducing

ADAM10 was found in major clinically-relevant cancer types (8,

11, 16). Among them, Trop-2 was shown to impact on the

progression and metastatic relapse of pancreatic cancer (PC)

(Figure 3) (10, 11). PC is a very aggressive disease with a poor

prognosis (5-year survival: ∼ 6%). Recent evidence on mutagenic and

non-mutagenic signatures in PC has started shedding light on its

pathogenic determinants. KRAS mutations have been detected in

about 90% of pre-neoplastic non-invasive lesions (low-grade

pancreatic intraepithelial neoplasia) (51), though more rarely at

more advanced stages of PC, suggesting a ‘common ground’ for

early PC development. Data on TROP2 prevalence added to this

scenario, as overexpression of Trop-2 was found in the majority of PC

patients (10). TROP2 mRNA and protein levels were subsequently

shown to be sharp prognostic biomarkers for PC (16) (Figure 3).

These findings suggested a driving role of Trop-2 in PC (16) and a

convergent impact of TROP2 and KRAS signaling pathways (17) at

early stages of cancer development (23). Along PC grade progression,

additional mutations were shown to occur in cell growth/death

regulatory genes including CDKN2A and TP53. Invasive PC carry

mutations in SMAD4 in about 55% of the cases (51), suggesting again

a broad, common ground for PC development.
A B

FIGURE 3

Trop-2 impact on pancreatic cancer. (A) KMPlot database (www.kmplot.com) data (50) of expression of TROP2 mRNA in pancreatic cancer versus
patient overall survival (OS). RNAseq high (red) versus low (black) TROP2 mRNA levels were compared by Kaplan-Meier survival analysis. Logrank P
value of survival curve comparison is shown. (B) Immunohistochemical analysis of Trop-2 protein expression in representative cases of pancreatic
cancer. Percent expression of Trop-2 by cancer cells is indicated. Expression classes were categorized as high (>75% of cells) medium (25-75% of
cells) and low/nil (<25% of cells) (23).
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Aberrant DNA methylation of gene promoter CpG islands was

detected in CACNA1G, CDH1, CDKN2A, DAPK1, MGMT, MINT1-

2-31-32, MLH1, RARB, THBS1 and TIMP3 (52, 53) .

Hypomethylation of the CLDN4, LCN2, MSLN, PSCA, S100A4,

TFF2 and YWHAS genes, with corresponding high levels of

transcription in PC, was found in parallel (54–56). Consistent

with findings that methylation of BRCA1 is associated to

metastatic relapse (57), promoter methylation of BRCA1 was

found in 46% of PC (58), suggesting a driving role in PC

occurrence and progression (59, 60). Parallel impact was shown

for BRCA-1 and BRCA-2 mutations (59, 60), suggesting a

convergent mechanism of inactivation of shared target genes in

PC. DNA methylation interacts with modified histones and plays a

role in chromatin remodeling and heterochromatin formation (61).

Unsurprisingly, mutations of the SWI/SNF chromatin remodeling

genes were found in 15% of PC cases (51), suggesting impact on

downstream epigenetic changes.

These findings suggested a mechanistic overlap between the

Trop-2 signature and mutagenic/epigenetic PC driving changes,

and supports a model of PC progression, through accumulation of

genetic and epigenetic changes during tumor initiation, promotion

and progression (62). Corresponding impact of genetic and

epigenetic changes was demonstrated for PC response to therapy

(63, 64), extending the value of Trop-2 as a therapy target in PC

(33), through the targeting of the Trop-2 activated form by next-

generation monoclonal antibodies (34).

3 Conclusions

Modelling of cancer genetic signatures, according to a multi-stage,

somatic mutation-based carcinogenesis process, has generated key

insight on cancer development, and has led to major advances of

anticancer therapy (6, 65). However, mutation-only tumor

progression models may risk missing major regulatory paths and

networks, that are driven by epigenetic components (6), together with

non-mutagenic (23), cancer-prone, acquired phenotypes (16, 66).

Upregulation of Trop-2 was shown to quantitatively stimulate

human cancer growth (23) and metastasis (16) in the absence of

detectable TROP2 gene mutations. Acquisition of stable, potentially

heritable modes of gene expression, as driven by gene expression

regulatory loops/miRNA (45, 46) and by post-transcriptional/post-

translational events, like oncogenic mRNA chimeras (20, 67, 68) were

shown to contribute to key steps of oncogenic transformation. Taken

together, these findings suggest that mutagenic and the TROP2 non-

mutagenic pathways deeply intertwine in driving cancer cell growth,

for a pivotal role in tumor progression in solid cancers. Next-

generation identification of oncogenic mutagenic/non-mutagenic

signatures in cancer development may provide additional insight

and generate novel models of cancer development.
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